Chronic exercise increases GAD gene expression in the caudal hypothalamus of spontaneously hypertensive rats

Brain Res Mol Brain Res. 2001 Nov 1;95(1-2):48-54. doi: 10.1016/s0169-328x(01)00239-x.

Abstract

Previous studies have suggested that a gamma-amino-butyric acid (GABA) deficit in the caudal hypothalamus (CH) of the spontaneously hypertensive rat (SHR) contributes to elevated levels of arterial pressure. The purpose of this study was to examine if SHR that underwent exercise training demonstrated a blunted development of hypertension and greater levels of glutamic acid decarboxylase (GAD) mRNA transcripts in the caudal hypothalamus. SHR were randomly paired and assigned to either a trained group (T; n=9) or a non-trained control group (NT; n=9). Trained animals were exercised for 10 weeks on a motorized treadmill while NT animals concurrently rested on a mock-treadmill. Following the 10-week training period, Northern blot analyses of mRNA for both the 65-kDa (GAD(65)) and 67-kDa (GAD(67)) isoforms of GAD were performed on tissue from caudal hypothalamic and cerebellar control brain regions. Exercise training simultaneously blunted the developmental rise in blood pressure in SHR (Delta59+/-9 mmHg in trained versus Delta77+/-9 mmHg in non-trained; P<0.03) and increased both GAD(65) (147+/-44%) and GAD(67) (162+/-77%) mRNA transcript levels in the CH (P<0.05). In contrast, no difference was detected in GAD mRNA levels in the cerebellum between T and NT SHR. These findings are consistent with our previous functional studies and demonstrate that exercise can significantly and specifically upregulate GAD gene transcript levels in the caudal hypothalamus of hypertensive rats.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blood Pressure
  • Blotting, Northern
  • Glutamate Decarboxylase / genetics
  • Glutamate Decarboxylase / metabolism*
  • Hypertension / metabolism*
  • Hypothalamus / metabolism*
  • Male
  • Physical Conditioning, Animal*
  • RNA, Messenger / metabolism
  • Rats

Substances

  • RNA, Messenger
  • Glutamate Decarboxylase