Previous studies have revealed that the expression of several endothelial cell adhesion molecules [e.g., intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and mucosal addressin cell adhesion molecule 1 (MAdCAM-1)] is dramatically elevated in the chronically inflamed colonic vasculature of severe combined immunodeficient (SCID) mice reconstituted with congenic CD4+, CD45RB(high) T lymphocytes. The objective of this study was to define the contribution of different endothelial cell adhesion molecules to the lymphocyte-endothelial cell (L/E) adhesion observed in the colonic microvasculature in this experimental model of inflammatory bowel disease. Fluorescently labeled T lymphocytes, isolated from spleens of normal BALB/C mice, were injected intravenously into SCID mice that had been reconstituted with CD4+, CD45RB(high) T lymphocytes either before (3 wk after reconstitution) or after (7 wk postreconstitution) the onset of clinical signs of colitis (i.e., diarrhea, loss of body wt). Intravital fluorescence microscopy was used to quantify L/E adhesion in different-sized venules of the colonic submucosa during the development of colitis. L/E adhesion was noted in some segments of the vasculature in precolitic SCID mice (3 wk after reconstitution) but not in similar-sized vessels of control (wild type and SCID) mice. L/E adhesion was observed in a greater proportion of venules and occurred with greater intensity in the mucosa of colitic mice (7 wk postreconstitution). Pretreatment with a blocking monoclonal antibody against MAdCAM-1, but not ICAM-1 or VCAM-1, significantly and profoundly reduced L/E adhesion in colitic mice. Immunohistochemical staining also revealed the localization of T cells on colonic endothelial cells expressing MAdCAM-1. These findings indicate that MAdCAM-1 is largely responsible for recruiting T lymphocytes into inflamed colonic tissue.