Background: Interleukin 10 (IL-10) is a homodimeric cytokine that shows considerable clinical promise. Adeno-associated virus (AAV) vectors appear increasingly useful for in vivo gene-transfer applications.
Methods: A recombinant AAV type 2 vector encoding human IL-10 (rAAVhIL10) was constructed by using an adenoviral-free, three-plasmid co-transfection. Cytokine production was measured by using an enzyme-linked immunosorbent assay. Endotoxic shock was induced by lipopolysaccharide (LPS) injection.
Results: As media from rAAVhIL10-infected COS cells caused a dose-dependent blockade of IL-12 secretion from spleen cells of IL-10 knockout (KO) mice challenged with Brucella abortus, it was clear that vector-derived hIL-10 was biologically active in vitro. Intravenous or intramuscular administration of relatively modest levels of rAAVhIL10 (10(10) genomes) to IL-10 KO mice resulted in hIL-10 secretion into the bloodstream, which, at 8 weeks, gave median serum levels of 0.9 and 0.45 pg/ml, respectively. Acute endotoxic shock led to a 33% mortality rate, and severe morbidity, in control IL-10 KO mice, whereas no mortality and little morbidity were seen in IL-10 KO mice given rAAVhIL10 7 weeks earlier.
Conclusions: The findings demonstrate that a modest dose of rAAVhIL10 administered in vivo provides long-term protection against LPS-induced endotoxic shock in a murine model. Thus, this vector may be useful for clinical applications requiring sustained IL-10 expression, for example in the treatment of several autoimmune diseases.