1. When administered subcutaneously HS-599, a new didehydroderivative of buprenorphine (18,19-dehydrobuprenorphine), produced a long-lasting antinociceptive response in rats. Its potency exceeded twice that of buprenorphine. In the tail-flick test it acted as a full agonist but in the plantar test only as a partial agonist. Whereas the mu-opioid antagonists naloxone and naltrexone antagonized HS-599 antinociception the delta-opioid antagonist naltrindole and the kappa-opioid antagonist nor-binaltorphimine did not. 2. Unlike buprenorphine and morphine, HS-599 never induced conditioned place-preference in rats. 3. In radioligand binding assays, compared with buprenorphine HS-599 had 3 fold higher mu-opioid receptor affinity but lower delta- and kappa-opioid receptor affinity. 4. In isolated guinea-pig ileum preparations, HS-599 only partially inhibited the electrically-stimulated contraction, acting as a partial opioid agonist. When tested against the mu-opioid receptor agonist dermorphin, it behaved as a non-equilibrium antagonist. Conversely, in mouse vas deferens (rich in delta-opioid receptors) and rabbit vas deferens preparations (rich in kappa-opioid receptors) HS-599 acted as a pure equilibrium antagonist, shifting the log-concentration-response curves of the delta-opioid agonist deltorphin I and the kappa-opioid agonist U-69593 to the right. 5. In conclusion, HS-599 is a novel buprenorphine derivative with higher affinity, selectivity and potency than the parent compound, for mu-opioid receptors. It produces intense and long-lasting antinociception and does not induce place-preference in rats.