An in vitro biomechanical investigation of an intramedullary nailing technique for repair of third metacarpal and metatarsal fractures in neonates and foals

Vet Surg. 2001 Sep-Oct;30(5):422-31. doi: 10.1053/jvet.2001.25866.

Abstract

Objective: To evaluate a dorsoproximal extra-articular approach for insertion of 8.25-mm, solid-titanium, intramedullary (IM) interlocking nails into ostectomized foal third metacarpal (MC3) and third metatarsal (MT3) bones; to compare the monotonic mechanical properties of IM nail constructs with paired intact bones; and to determine the effects of age, body weight, fore- or hindlimb, and left or right limb on the mechanical testing variables.

Animal or sample population: Twenty bone pairs (10 MC3, 10 MT3) collected from 10 foals of various weights and ages.

Methods: One bone from each pair was randomly selected to be ostectomized and stabilized using an 8.25-mm, solid-titanium IM nail, and four 3.7-mm titanium interlocking screws (construct). Constructs and contralateral intact bone specimens were tested in axial compression and palmaro-/plantarodorsal (PD) 4-point bending. Monotonic mechanical properties were compared between intact specimens and constructs with an ANOVA; significance was set at P <.05.

Results: Nail insertion caused bone failure in 6 MC3 and 2 MT3. In general, mean mechanical testing values indicated that intact specimens were significantly stronger and stiffer than constructs for all age and weight ranges when tested in compression and PD 4-point bending (P <.05). Bone strength and stiffness of intact specimens tested in compression and bending tended to increase linearly with age and weight.

Conclusion: IM interlocking nail fixation of gap-ostectomized MC3 and MT3 with 8.25-mm IM nails and 3.7-mm interlocking screws did not achieve sufficient strength or stiffness to be recommended as the sole means of repair for comminuted MC3 and MT3 fractures in young foals.

Clinical relevance: IM interlocking nail fixation of foal cannon bone fractures may be useful to decrease soft-tissue disruption at the fracture site; however, there is a risk of bone failure associated with extra-articular insertion. This method should be combined with other forms of external coaptation for added stability in axial compression and PD bending.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Biomechanical Phenomena
  • Bone Nails / veterinary*
  • Female
  • Fracture Fixation, Internal / instrumentation
  • Fracture Fixation, Internal / methods
  • Fracture Fixation, Internal / veterinary*
  • Fractures, Bone / surgery
  • Fractures, Bone / veterinary*
  • Horses / injuries*
  • Horses / surgery
  • Metacarpus / injuries*
  • Metacarpus / surgery
  • Metatarsal Bones / injuries*
  • Metatarsal Bones / surgery