The oxygen-stable hemolysin streptolysin S (SLS) of Streptococcus pyogenes is encoded in part by the pel/sagA gene product. Antibodies to a synthetic peptide from the C terminus of the Pel/SagA open reading frame inhibited hemolysis mediated by both culture supernatants from multiple M serotypes of S. pyogenes isolates or a commercially available SLS preparation. Analysis of the SLS-mediated hemolytic reaction demonstrated that it was temperature- and concentration-dependent. Like complement-mediated hemolysis it conforms to the prediction of a one-hit mechanism of hemolysis. A number of intermediates in the SLS-mediated hemolysis of sheep erythrocytes could be distinguished. SLS could bind to erythrocytes below 17 degrees C; however, lysis could only occur at temperatures >23 degrees C. Following binding of SLS and washing, a papain-sensitive intermediate could be distinguished prior to insertion of the SLS complex into the erythrocyte membrane, which resulted in formation of a transmembrane pore and led to irreversible osmotic lysis of the cell. These intermediates were similar to those described previously during complement-mediated hemolysis.