Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks

Neuroimage. 2001 Jul;14(1 Pt 1):48-59. doi: 10.1006/nimg.2001.0791.

Abstract

Neuroimaging studies have suggested the involvement of ventrolateral, dorsolateral, and frontopolar prefrontal cortex (PFC) regions in both working (WM) and long-term memory (LTM). The current study used functional magnetic resonance imaging (fMRI) to directly compare whether these PFC regions show selective activation associated with one memory domain. In a within-subjects design, subjects performed the n-back WM task (two-back condition) as well as LTM encoding (intentional memorization) and retrieval (yes-no recognition) tasks. Additionally, each task was performed with two different types of stimulus materials (familiar words, unfamiliar faces) in order to determine the influence of material-type vs task-type. A bilateral region of dorsolateral PFC (DL-PFC; BA 46/9) was found to be selectively activated during the two-back condition, consistent with a hypothesized role for this region in active maintenance and/or manipulation of information in WM. Left frontopolar PFC (FP-PFC) was also found to be selectively engaged during the two-back. Although FP-PFC activity has been previously associated with retrieval from LTM, no frontopolar regions were found to be selectively engaged by retrieval. Finally, lateralized ventrolateral PFC (VL-PFC) regions were found to be selectively engaged by material-type, but uninfluenced by task-type. These results highlight the importance of examining PFC activity across multiple memory domains, both for functionally differentiating PFC regions (e.g., task-selectivity vs material-selectivity in DL-PFC and VL-PFC) and for testing the applicability of memory domain-specific theories (e.g., FP-PFC in LTM retrieval).

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Brain Mapping
  • Dominance, Cerebral / physiology
  • Female
  • Humans
  • Magnetic Resonance Imaging*
  • Male
  • Mental Recall / physiology*
  • Pattern Recognition, Visual / physiology*
  • Prefrontal Cortex / physiology*
  • Reference Values
  • Retention, Psychology / physiology*
  • Verbal Learning / physiology*