A system has been established to assess the recruitment of 99mTc-hexamethylpropylene amine oxamine (99mTc-HMPAO)-labelled PBMC and [125I]iododeoxyuridine-labelled Con A stimulated lymphoblasts to allogeneic human synovial xenografts in the ears of SCID mice. Successful engraftment of osteoarthritic synovium was achieved in approximately 90% of cases and a connection between the human microvasculature of the xenograft and the circulation of the mouse was shown. Cells were delivered to the xenograft by a system of regional vascular perfusion, thus avoiding the major murine vascular beds. The accumulation of 99mTc-HMPAO-labelled PBMC in mouse ears was monitored in real time. Direct injection of xenograft-bearing ears with recombinant human TNF-alpha, 7 h prior to perfusion, increased the accumulation of both PBMC and lymphoblasts in cytokine-injected ears compared to contralateral control-injected ears. Autoradiography revealed the presence of [125I]iododeoxyuridine-labelled lymphoblasts associated with human microvasculature within the xenograft. However, the increased accumulation of lymphoblasts in cytokine-injected ears occurred in the tissues surrounding the xenograft, where lymphoblasts were associated more often with murine than human vessels. Although the system described offers advantages over similar models, the propensity for mouse endothelium to interact with human leucocytes is likely to be a generic disadvantage for models of human leucocyte recruitment to xenografts in immunodeficient mice.