Location and orientation of minK within the I(Ks) potassium channel complex

J Biol Chem. 2001 Oct 12;276(41):38249-54. doi: 10.1074/jbc.M103956200. Epub 2001 Jul 30.

Abstract

The slowly activating cardiac potassium current (I(Ks)) is generated by a heteromultimeric potassium channel complex consisting of pore-forming (KvLQT1) and accessory (minK) subunits belonging to the KCNQ and KCNE gene families, respectively. Evidence indicating that minK residues line the I(Ks) pore originates from the observation that two minK cysteine mutants (G55C and F54C) render I(Ks) Cd2+-sensitive. We have identified a single cysteine residue in the KvLQT1 S6 segment (Cys-331) that contributes to Cd2+ coordination in conjunction with cysteine residues engineered into the minK transmembrane domain. This observation indicates that minK resides in close proximity to S6 in the I(Ks) channel complex. On the basis of homology modeling that compares the KvLQT1 S6 segment with the structure of the bacterial potassium channel KcsA, we predict that the sulfhydryl side chain of Cys-331 projects away from the central axis of the KvLQT1 pore and suggest that minK resides outside of the permeation pathway. A preliminary model illustrating the orientation of minK with S6 was validated by successful prediction of a novel Cd2+ binding site created within the I(Ks) channel complex by engineering additional cysteine residues into both subunits. Our results indicate the location and orientation of minK within the I(Ks) channel complex and further suggest that Cd2+ exerts its effect on I(Ks) through an allosteric mechanism rather than direct pore blockade.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Binding Sites
  • Cadmium / metabolism
  • Cysteine / genetics
  • Humans
  • KCNQ Potassium Channels
  • KCNQ1 Potassium Channel
  • Long QT Syndrome / metabolism
  • Mutagenesis
  • Potassium Channels / chemistry
  • Potassium Channels / genetics
  • Potassium Channels / metabolism*
  • Potassium Channels, Voltage-Gated*
  • Protein Binding
  • Xenopus

Substances

  • KCNQ Potassium Channels
  • KCNQ1 Potassium Channel
  • KCNQ1 protein, human
  • Potassium Channels
  • Potassium Channels, Voltage-Gated
  • potassium channel protein I(sk)
  • Cadmium
  • Cysteine