Purpose: To test whether bis-gadolinium mesoporphyrins-enhanced magnetic resonance (MR) imaging can accurately depict irreversibly damaged myocardium in occlusive myocardial infarction.
Materials and methods: Ten cats were subjected to 90 minutes of occlusion of the left anterior descending coronary artery. Bis-gadolinium mesoporphyrins-enhanced T1-weighted MR imaging was performed in the cats for 6 hours. Histopathologic examinations with 2'3'5-triphenyl tetrazolium chloride (TTC) staining and electron microscopy were performed on the resected specimens. The time course and pattern of signal intensity enhancement were evaluated. The size of the infarcted myocardium was estimated on the MR images by measuring the size of the signal intensity-enhanced area.
Results: In eight of 10 cats, it was impossible to distinguish infarcted myocardium from normal myocardium at visual inspection of T1-weighted MR images. The contrast ratio between infarcted and normal myocardium did not increase significantly over time. In one of the two remaining cats, a doughnut pattern of signal intensity enhancement was noted. The other cat showed intensely homogeneous enhancement of infarcted myocardium at MR imaging. The size of the area of signal intensity enhancement at MR imaging in these two cats was accurately mapped to that of the infarction on the TTC-stained specimens.
Conclusion: Occlusive myocardial infarction cannot be accurately detected at bis-gadolinium mesoporphyrins-enhanced MR imaging.