The dopamine agonist apomorphine robustly disrupts prepulse inhibition of the acoustic startle response in the rat, yet published studies have not demonstrated a robust disruption of prepulse inhibition with apomorphine in the mouse. The aim of these studies was to establish the optimal prepulse conditions (using manipulations to prepulse intensity and inter-stimulus interval) and mouse strain(s) for testing apomorphine, and also the prepulse inhibition disrupting drugs amphetamine, and dizocilpine (MK-801). The effects of these drugs on startle response and prepulse inhibition were tested in outbred CD-1 and Swiss Webster (CFW) strains, and the inbred C57BL/6, 129X1/SvJ, and A/J strains. There were strain differences with baseline startle and prepulse inhibition in that the CD-1, CFW, and C57BL/6 strains exhibited high levels of startle and prepulse inhibition, the 129X1/SvJ strain exhibited low levels of startle but high levels of prepulse inhibition, while the A/J strain exhibited low startle and no prepulse inhibition. Apomorphine disrupted prepulse inhibition in the CFW and C57BL/6 strains and the effect was only evident when using a short 30 ms inter-stimulus interval. Amphetamine disrupted prepulse inhibition in the CFW, C57BL/6, and 129X1/SvJ strains, and dizocilpine disrupted prepulse inhibition in the CD-1, CFW, C57BL/6, and 129X1/SvJ strains. The effects of amphetamine and dizocilpine were independent of the inter-stimulus interval. These studies demonstrated clear strain differences in the startle response and prepulse inhibition, and the pharmacological disruptions of prepulse inhibition, and suggest that inter-stimulus intervals less than 100 ms may be optimal for detecting the effects of apomorphine in mice.