The role of P-glycoprotein on the efflux of the 5-HT(1A) receptor agonist flesinoxan across the blood-brain barrier in vivo and in vitro was investigated. In vitro, the transport ratios (representing polarized transport) of flesinoxan (10 microg/ml) were 4.2 in the MDR1-transfected LLC-PK1 cell line, which could be inhibited by the Pgp modulators SDZ-PSC 833 and LY 335979 and 1.1 in the wild-type LLC-PK1 cell line after 4 h. Flesinoxan concentrations lower than 33 microg/ml were actively transported by Pgp, while at higher concentrations Pgp became saturated and transport in the MDR1-transfected cell line was comparable with the wild-type cell line. In the in vitro BBB co-culture model the transport ratio was 2.0 and was decreased to 1.0 in the presence of Pgp modulators. In vivo, the accumulation of flesinoxan in the brain at 3 h was much higher in the mdr1a(-/-) mice compared to mdr1a(+/+) mice (ratio 12.6 and 27.0 at dose levels of 3 mg/kg and 10 mg/kg respectively). In conclusion, both in vivo as well as in vitro results have demonstrated that Pgp is a limiting factor for the transport of the 5-HT(1A) receptor agonist flesinoxan into the CNS. This should be considered when its application in therapy is combined with other Pgp substrates.