Hypermethylation is an important mechanism for repression of tumor gene suppressor in cancer. The drug 5'-azacytidine (AZC) has been used as demethylating agent to induce the expression of previously silencing genes. In the present work, we attempted to determine, using proteomics, the changes in protein expression profiles following a treatment of an Epstein Barr virus (EBV)-negative Burkitt lymphoma (BL) cell line DG 75. The effects of the treatment in terms of cell viability and growth were first examined. The following observations were made: AZC treatment led to (i) a decrease in cell growth with an arrest of the cell at G0/G1 phase of the cell cycle, (ii) the expression of p16, a tumor-suppressor gene whose expression was dependent on its promoter demethylation. Proteomic study evidenced that AZC treatment affected protein expression in two different ways. Twenty-one polypeptides were down-expressed, while 14 showed an increased expression. Some of the upregulated proteins appeared related to the energy metabolism, to organization of cytoskeletal structures, and to cell viability and protein synthesis. We also established a reference map for proteins in DG 75 cell line, comprising 74 different polypeptides corresponding to 67 proteins. This map will be accessible via Internet as a resource for proteome analyses of B-cells. Taken together, the results presented here highlight new insights into lymphoma cell gene regulations following a treatment of lymphoma cells with AZC and illustrate a use of proteomics to evidence the direct and indirect effects of a drug and the pathways it possibly regulates.