Activation of MAP kinase leads to the activation of p53-dependent pathways, and vice-versa. Although the amount of p53 protein increases in response to MAP kinase-dependent signaling, the basis of this increase is not yet fully understood. We have isolated the mutant cell line AP14, defective in p53 expression, from human HT1080 fibrosarcoma cells, which have an activated ras allele. The expression of p53 mRNA and protein is approximately 10-fold lower in AP14 cells than in the parental cells. The high constitutive phosphorylation and activities of the MAP kinases ERK1 and ERK2 in HT1080 cells are greatly reduced in AP14 cells, although the levels of these proteins are unchanged, suggesting that the defect in the mutant cells affects the steady-state phosphorylation of ERK1 and ERK2. Overexpression of ERK2 in AP14 cells restored both MAP kinase activity and p53 expression, and incubation of the mutant cells with the phosphatase inhibitor orthovanadate resulted in strong coordinate elevation of MAP kinase activity and p53 expression. The levels of expression of the p53-regulated gene p21 parallel those of p53 throughout, showing that basal p21 expression depends on p53. The levels of p53 mRNA increased by 5-8-fold when activated ras was introduced into wild-type cells, and the levels of the p53 and p21 proteins decreased substantially in wild-type cells treated with the MEK inhibitor U0216. We conclude that MAP kinase-dependent pathways help to regulate p53 levels by regulating the expression of p53 mRNA.