A detailed analysis of the molecular epidemiology of non-O157:H7 Shiga toxin-producing Escherichia coli (STEC) was performed by using isolates from sporadic cases of hemolytic-uremic syndrome (HUS), animal reservoirs, and food products. The isolates belonged to the O91 and OX3 serogroups and were collected in the same geographical area over a short period of time. Five typing methods were used; some of these were used to explore potentially mobile elements like the stx genes or the plasmids (stx(2)-restriction fragment length polymorphism [RFLP], stx(2) gene variant, and plasmid analyses), and others were used to study the whole genome (ribotyping and pulsed-field gel electrophoresis [PFGE]). The techniques revealed that there was great diversity among the O91 and OX3 STEC strains isolated in central France. A close relationship between strains of the same serotype having the same virulence factor pattern was first suggested by ribotyping. However, stx(2)-RFLP and stx(2) variant analyses differentiated all but 5 of 21 isolates, and plasmid analysis revealed further heterogeneity; a unique combination of characteristics was obtained for all strains except two O91:H21 isolates from beef. The latter strains were shown by PFGE to be the most closely related isolates, with >96% homology, and hence may be subtypes of the same strain. Overall, our results indicate that the combination of stx(2)-RFLP, stx(2) variant, and plasmid profile analyses is as powerful as PFGE for molecular investigation of STEC diversity. Finally, the non-O157:H7 STEC strains isolated from HUS patients were related to but not identical to those isolated from cattle and food samples in the same geographical area. The possibility that there are distinct lineages of non-O157:H7 STEC, some of which are more virulent for humans, should be investigated further.