Intravitreal injection of N-methyl-D-aspartate (NMDA) produced a substantial damage to the adult rat retina that was largely restricted to inner retinal layers, including the ganglion cell layer (GCL), inner nuclear layer (INL), inner, and outer plexiform layers. This retinal damage was significantly reduced by a systemic injection of a low dose of MK-801 (0.5 mg/kg), a potent NMDA-receptor antagonist. This neuroprotection was dose dependent and was most effective when the antagonist was given 1 h before NMDA insult. An intraperitoneal injection of 0.5 mg/kg MK-801 provided a virtually complete protection to the retina to the NMDA-induced toxicity, as indicated quantitatively by the number of DiI-filled retinal ganglion cells, the number of cells in the GCL and INL that undergo DNA fragmentation, and the edematous changes in retinal thickness. A post-lesion administration of MK-801 was still able to provide an effective neuroprotective effect to the retina, but this protection was lost when MK-801 was given 4 h after NMDA exposure. The current results indicate a therapeutic potential of systemic application of MK-801 in protecting the adult rat retina from neurologic disorders related to excessive activation of NMDA receptors.