We present observations of photosynthetic carbon dioxide assimilation, and leaf starch content from genetically modified tobacco (Nicotiana tabacum) plants in which the activity of the Calvin cycle enzyme, sedoheptulose-1,7-bisphosphatase, is reduced by an antisense construct. The measurements were made on leaves of varying ages and used to calculate the flux control coefficients of sedoheptulose-1,7-bisphosphatase over photosynthetic assimilation and starch synthesis. These calculations suggest that control coefficients for both are negative in young leaves, and positive in mature leaves. This behaviour is compared to control coefficients obtained from a detailed computer model of the Calvin cycle. The comparison demonstrates that the experimental observations are consistent with bistable behaviour exhibited by the model, and provides the first experimental evidence that such behaviour in the Calvin cycle occurs in vivo as well as in silico.