Equilibrium and kinetics of bromine chloride hydrolysis

Environ Sci Technol. 2001 Mar 15;35(6):1127-33. doi: 10.1021/es001380r.

Abstract

Aqueous-phase halogen reactions play an important role in tropospheric ozone depletion that is observed during Arctic sunrise where bromine chloride is a key intermediate. The temperature dependencies of BrCl(aq) equilibration with BrCl2-, HOBr(aq), Br2(aq), Cl2(aq), HOCl(aq), Br-, and other species (Br3-, Br2Cl-, Cl3-, OBr-, and OCI-) are determined as a function of Cl- concentration from pH 0 to pH 7. Values for K1 (=[BrCl2-]/([BrCl(aq)][Cl-])) at mu = 1.0 M are 3.8 M(-1) at 25.0 degrees C, 4.7 M(-1) at 10.0 degrees C, and 5.5 M(-1) at 0.0 degrees C, with deltaH1 degrees = -9.9 kJ mol(-1) and deltaS1 degrees = -22 J K(-1) mol(-1). BrCl(aq) hydrolysis equilibria have little or no temperature dependence with Kh1 (=[HOBr(aq)][Cl-][H+]/[BrCl(aq)]) = 1.3 x 10(-4) M2 from 25.0 to 5.0 degrees C, mu = 1.0 M. When conditions are adjusted to give a rapid partial hydrolysis of BrCl in equilibrium with HOBr and Cl- at p[H+] 4.31, a relatively slow reaction (kobsd = 2.4 s(-1)) to form HOCl and Br- is observed. This takes place via BrCl reaction with Cl- to form Cl2, which hydrolyzes in the rate-determining step to give HOCl. On the other hand, the rate of complete BrCl hydrolysis to form HOBr and Cl- at p[H+] 6.4 is extremely rapid with a first-order rate constant of 3.0 x 10(6) s(-1) at 25.0 degrees C. The reverse reaction between HOBr, Cl-, and H+ has a rate constant of 2.3 x 10(10) M(-2) s(-1), so that in seawater, where [Cl-]/[Br-] = 700, the formation of BrCl is much faster than the formation of Br2 from HOBr, Br-, and H+. Rapid formation of BrCl(aq) and its subsequent reaction with Br- is a viable pathway to give Br2(aq). Photolysis of Br2(g) is believed to initiate the reactions associated with ozone depletion.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bromides / chemistry*
  • Chlorides / chemistry*
  • Hydrogen-Ion Concentration
  • Hydrolysis
  • Kinetics
  • Oxidants, Photochemical / chemistry
  • Ozone / chemistry
  • Temperature

Substances

  • Bromides
  • Chlorides
  • Oxidants, Photochemical
  • Ozone
  • bromine chloride