The existence of a quantitative trait locus (QTL) is usually tested using the likelihood of the quantitative trait on the basis of phenotypic character data plus the recombination fraction between QTL and flanking markers. When doing this, the likelihood is calculated for all possible locations on the linkage map. When multiple QTL are suspected close by, it is impractical to calculate the likelihood for all possible combinations of numbers and locations of QTL. Here, we propose a genetic algorithm (GA) for the heuristic solution of this problem. GA can globally search the optimum by improving the "genotype" with alterations called "recombination" and "mutation." The "genotype" of our GA is the number and location of QTL. The "fitness" is a function based on the likelihood plus Akaike's information criterion (AIC), which helps avoid false-positive QTL. A simulation study comparing the new method with existing QTL mapping packages shows the advantage of the new GA. The GA reliably distinguishes multiple QTL located in a single marker interval.