A nonparametric Bayesian formulation is given to the problem of modeling nonhomogeneous spatial point patterns influenced by concomitant variables. Only incomplete information on the concomitant variables is assumed, consisting of a relatively small number of point measurements. Residual variation, caused by other unmeasured influential factors, is modeled in terms of a spatially varying baseline intensity function. A Markov chain Monte Carlo scheme is proposed for the simultaneous nonparametric estimation of each unknown function in the model. The suggested method is illustrated by reanalysing a data set in Rathbun (1996, Biometrics 52, 226-242), and the estimated models are compared with those obtained by Rathbun.