Abstract
During apoptosis, cytochrome c is released into the cytosol as the outer membrane of mitochondria becomes permeable, and this acts to trigger caspase activation. The consequences of this release for mitochondrial metabolism are unclear. Using single-cell analysis, we found that when caspase activity is inhibited, mitochondrial outer membrane permeabilization causes a rapid depolarization of mitochondrial transmembrane potential, which recovers to original levels over the next 30-60 min and is then maintained. After outer membrane permeabilization, mitochondria can use cytoplasmic cytochrome c to maintain mitochondrial transmembrane potential and ATP production. Furthermore, both cytochrome c release and apoptosis proceed normally in cells in which mitochondria have been uncoupled. These studies demonstrate that cytochrome c release does not affect the integrity of the mitochondrial inner membrane and that, in the absence of caspase activation, mitochondrial functions can be maintained after the release of cytochrome c.
Publication types
-
Research Support, U.S. Gov't, P.H.S.
MeSH terms
-
Amino Acid Chloromethyl Ketones / pharmacology
-
Animals
-
Apoptosis / physiology*
-
Caspase Inhibitors
-
Caspases / metabolism*
-
Cells, Cultured
-
Cytochrome c Group / metabolism*
-
Dactinomycin / pharmacology
-
Fibroblasts / physiology
-
Flow Cytometry
-
Fluorescent Dyes / metabolism
-
Green Fluorescent Proteins
-
Humans
-
Intracellular Membranes / metabolism*
-
Luminescent Proteins / metabolism
-
Membrane Potentials / physiology
-
Mice
-
Microscopy, Confocal
-
Mitochondria / drug effects
-
Mitochondria / physiology*
-
Protein Synthesis Inhibitors / pharmacology
-
Proto-Oncogene Proteins c-bcl-2 / metabolism
-
Recombinant Fusion Proteins / metabolism
-
Time Factors
-
Uncoupling Agents / pharmacology
Substances
-
Amino Acid Chloromethyl Ketones
-
Caspase Inhibitors
-
Cytochrome c Group
-
Fluorescent Dyes
-
Luminescent Proteins
-
Protein Synthesis Inhibitors
-
Proto-Oncogene Proteins c-bcl-2
-
Recombinant Fusion Proteins
-
Uncoupling Agents
-
benzyloxycarbonylvalyl-alanyl-aspartyl fluoromethyl ketone
-
Green Fluorescent Proteins
-
Dactinomycin
-
Caspases