Melanin-concentrating hormone (MCH) is involved in the regulation of feeding and energy homeostasis. Recently, a 353-amino acid splice variant form of the human orphan receptor SLC-1 () (hereafter referred to as MCH(1)) was identified as an MCH receptor. This report describes the cloning and functional characterization of a novel second human MCH receptor, which we designate MCH(2), initially identified in a genomic survey sequence as being homologous to MCH(1) receptors. Using this sequence, a full-length cDNA was generated with an open reading frame of 1023 base pairs, encoding a polypeptide of 340 amino acids, with 38% identity to MCH(1) and with many of the structural features conserved in G protein-coupled receptors. This newly discovered receptor belongs to class 1 (rhodopsin-like) of the G protein-coupled receptor superfamily. HEK293 cells transfected with MCH(2) receptors responded to nanomolar concentrations of MCH with an increase in intracellular Ca(2+) levels and increased cellular extrusion of protons. In addition, fluorescently labeled MCH bound with nanomolar affinity to these cells. The tissue localization of MCH(2) receptor mRNA, as determined by quantitative reverse transcription-polymerase chain reaction, was similar to that of MCH(1) in that both receptors are expressed predominantly in the brain. The discovery of a novel MCH receptor represents a new potential drug target and will allow the further elucidation of MCH-mediated responses.