Investigating cooperativity in multimeric enzymes is of utmost interest to improve our understanding of the mechanism of enzymatic regulation. In the present article, we propose a novel approach based on mass spectrometry to probe cooperativity in the binding of a ligand to a multisubunit enzyme. This approach presents the selective advantage of giving a direct insight into all the subsequent ligation states that are formed in solution as the ligand is added to the enzyme. A quantitative interpretation of the electrospray ionization (ESI) mass spectra gives the relative abundance of all the distinct enzymatic species, which allows one to directly deduce the cooperativity of the system. The overall method is described for the addition of the oxidized cofactor nicotinamide adenine dinucleotide (NAD(+)) to a dimeric mutant of Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase (GPDH). It is then applied to four tetrameric enzymes: sturgeon muscle GPDH, wild type and S48G mutant of GPDH from B. stearothermophilus, and alcohol dehydrogenase (ADH) from Bakers yeast. The results illustrate the possibilities offered by this new technique. First, mass spectrometry allows a control of the enzymes before the addition of NAD(+). Second, the cooperative behavior can be drawn from one single ESI mass spectrum, which makes the method highly attractive in terms of the amount of biological material required. Above all, the major benefit lies in the direct visualization of all the enzymatic species that are in equilibrium in solution. The direct measurement of cooperativity readily resolve the inconvenience of the classical approaches employed in this field, which all need to model the experimental data in order to get the cooperative behavior of the system.
Copyright 2001 Academic Press.