The expansion segments in eukaryotic ribosomal RNAs are additional RNA sequences not found in the RNA core common to both prokaryotes and eukaryotes. These regions show large species-dependent variations in sequence and size. This makes it difficult to create secondary structure models for the expansion segments exclusively based on phylogenetic sequence comparison. Here we have used a combination of experimental data and computational methods to generate secondary structure models for expansion segment 15 in 28S rRNA in mice, rats, and rabbits. The experimental data were collected using the structure sensitive reagents DMS, CMCT, kethoxal, micrococcal nuclease, RNase T(1), RNase CL3, RNase V(1), and lead(II) acetate. ES15 was folded with the computer program RNAStructure 3.5 using modification data and phylogenetic similarities between different ES15 sequences. This program uses energy minimization to find the most stable secondary structure of an RNA sequence. The presented secondary structure models include several common structural motifs, but they also have characteristics unique to each organism. Overall, the secondary structure models showed indications of an energetically stable but dynamic structure, easily accessible from the solution by the modification reagents, suggesting that the expansion segment is located on the ribosomal surface.