We compared a potential to generate mast cells among various sources of CD34(+) peripheral blood (PB) cells in the presence of stem cell factor (SCF) with or without thrombopoietin (TPO), using a serum-deprived liquid culture system. From the time course of relative numbers of tryptase-positive and chymase-positive cells in the cultured cells grown by CD34(+) PB cells of nonasthmatic healthy individuals treated with G-CSF, TPO appears to potentiate the SCF-dependent growth of mast cells without influencing the differentiation into mast cell lineage. CD34(+) PB cells from asthmatic patients in a stable condition generated significantly more mast cells under stimulation with SCF alone or SCF+TPO at 6 wk of culture than did steady-state CD34(+) PB cells of normal controls. Single-cell culture studies showed a substantial difference in the number of SCF-responsive or SCF+TPO-responsive mast cell progenitors in CD34(+) PB cells between the two groups. In the presence of TPO, CD34(+) PB cells from asthmatic children could respond to a suboptimal concentration of SCF to a greater extent, compared with the values obtained by those of normal controls. Six-week cultured mast cells of asthmatic subjects had maturation properties (intracellular histamine content and tryptase/chymase enzymatic activities) similar to those derived from mobilized CD34(+) PB cells of nonasthmatic subjects. An increase in a potential of circulating hemopoietic progenitors to differentiate into mast cell lineage may contribute to the recruitment of mast cells toward sites of asthmatic mucosal inflammation.