Interactions of surfactant proteins A and D with Saccharomyces cerevisiae and Aspergillus fumigatus

Infect Immun. 2001 Apr;69(4):2037-44. doi: 10.1128/IAI.69.4.2037-2044.2001.

Abstract

Surfactant proteins A (SP-A) and D (SP-D) are members of the collectin family of calcium-dependent lectins and are important pulmonary host defense molecules. Human SP-A and SP-D and rat SP-D bind to Aspergillus fumigatus conidia, but the ligand remains unidentified. To identify a fungal ligand for SP-A and/or SP-D, we examined the interactions of the proteins with Saccharomyces cerevisiae. SP-D but not SP-A bound yeast cells, and EDTA inhibited the binding. SP-D also aggregated yeast cells and isolated yeast cell walls. Treating yeast cells to remove cell wall mannoprotein did not reduce SP-D binding, and SP-D failed to aggregate chitin. However, SP-D aggregated yeast glucan before and after treatment with a beta(1-->3)-glucanase, suggesting a specific interaction between the collectin and beta(1-->6)-glucan. In support of this idea, SP-D-induced yeast aggregation was strongly inhibited by pustulan [a beta(1-->6)-linked glucose homopolymer] but was not inhibited by laminarin [a beta(1-->3)-linked glucose homopolymer]. Additionally, pustulan but not laminarin strongly inhibited SP-D binding to A. fumigatus. The pustulan concentration for 50% inhibition of SP-D binding to A. fumigatus is 1.0 +/- 0.3 microM glucose equivalents. Finally, SP-D showed reduced binding to the beta(1-->6)-glucan-deficient kre6 yeast mutant. Taken together, these observations demonstrate that beta(1-->6)-glucan is an important fungal ligand for SP-D and that glycosidic bond patterns alone can determine if an extended carbohydrate polymer is recognized by SP-D.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aspergillus fumigatus / metabolism*
  • Chitin / metabolism
  • Glucans / metabolism
  • Glycoproteins / metabolism*
  • Ligands
  • Proteolipids / metabolism*
  • Pulmonary Surfactant-Associated Protein A
  • Pulmonary Surfactant-Associated Protein D
  • Pulmonary Surfactant-Associated Proteins
  • Pulmonary Surfactants / metabolism*
  • Saccharomyces cerevisiae / metabolism*

Substances

  • Glucans
  • Glycoproteins
  • Ligands
  • Proteolipids
  • Pulmonary Surfactant-Associated Protein A
  • Pulmonary Surfactant-Associated Protein D
  • Pulmonary Surfactant-Associated Proteins
  • Pulmonary Surfactants
  • Chitin