We have evaluated the feasibility of using four positron emission tomography (PET) tracers for imaging the globus pallidus by ex vivo autoradiography in rats. The tracers investigated were [11C]KF18446, [11C]SCH 23390 and [11C]raclopride for mapping adenosine A2A, dopamine D1 and dopamine D2 receptors, respectively, and [18F]FDG. The highest uptake by the globus pallidus was found for [11C]SCH 23390, followed by [18F]FDG, [11C]KF18446 and [11C]raclopride. The receptor-specific uptake by the globus pallidus was observed in [11C]KF18446 and [11C]SCH 23390, but not in [11C]raclopride. Uptake ratios of globus pallidus to the striatum for [18F]FDG and [11C]KF18446 were approximately 0.6, which was twice as large as that for [11C]SCH 23390. In a rat model of degeneration of striatopallidal gamma-aminobutyric acid-ergic-enkephalin neurons induced by intrastriatal injection of quinolinic acid, the uptake of [11C]KF18446 by the striatum and globus pallidus was remarkably reduced. To prove the visualization of the globus pallidus by PET with [18F]FDG and [11C]KF18446, PET-MRI registration technique and advances in PET technologies providing high-resolution PET scanner will be required. The metabolic activity of the globus pallidus could then be measured by PET with [18F]FDG, and [11C]KF18446 may be a candidate tracer for imaging the pallidal terminals projecting from the striatum.