The present study has aimed at providing new insight into short-wave near-infrared (NIR) spectroscopy of biological fluids. To do that, we analyzed NIR spectra in the 800-1,100-nm region of 100 raw milk samples. The contents of fat, proteins, and lactose were predicted by partial least-squares (PLS) regression and band assignment in that region was investigated based upon PLS loading plots and regression coefficients. For the fat prediction, the whole set of samples was divided into two groups and the fat concentration was predicted for the samples that were not included in the calibration procedures. The correlation coefficient and root-mean-square error of prediction (RM-SEP) in the better prediction run were found to be 0.996 and 0.087 wt %, respectively. Assignment of the bands due to fat was proposed based upon the regression coefficients and PLS loading weights, and the importance of a pretreatment in the prediction was discussed. Milk proteins also yielded sufficient correlation coefficients and RMSEP although the contributions of protein bands to the milk spectra were much smaller than those of the fat bands. The sizes of the calibration models for protein prediction were considered. This is the first time that good correlation coefficients and RMSEP of proteins have ever been obtained for the short-wave NIR spectra of milk. For lactose, noisy regression coefficients with limited prediction ability were obtained. Band assignment was investigated also for bands due to proteins and lactose. We propose the detailed band assignment for the short-wave NIR region useful for various biological fluids. The results presented here demonstrate that the short-wave NIR region is promising for the fast and reliable determination of major components in biological and biomedical fluids.