Trimidox (3,4,5-trihydroxybenzohydroxamidoxime), a recently synthesized inhibitor of ribonucleotide reductase (RR), was shown to exert anti-proliferative activities in HL-60 and K562 human leukemia cell lines and to prolong the life span of mice inoculated with L1210 mouse leukemia cells. Here we test whether trimidox also exhibits anti-neoplastic properties in ovarian carcinoma cells. Since the mode of action of trimidox on cell fate has not been investigated so far, we addressed this unresolved item and find that this polyhydroxybenzoic acid derivative induces apoptosis of N.1 human ovarian carcinoma cells when tested in growth factor deprived medium. Utilizing an improved analysis, based on Hoechst 33258/propidium iodide double staining, apoptosis is quantified and discriminated from necrosis. Trimidox induces c-myc expression, which is indispensible for apoptosis of N.1 cells, and expression of plasminogen activator/urokinase type (upa), which supports the apoptotic process under more physiological conditions. Surprisingly, trimidox does not block dNTP synthesis in N.1 cells at the concentrations tested and, therefore, trimidox induces apoptosis independent of RR-inhibition. Like TNFalpha or benzamide riboside, which are also inducers of apoptosis of N.1 cells, trimidox also down-regulates the G1 cell cycle phosphatase cdc25A, whereas cyclin D1 becomes up-regulated. This report shows that trimidox destroys human ovarian carcinoma cells by inducing them to undergo apoptosis as well as corroborating previous investigations which demonstrated that apoptosis of these cells depends on c-myc over-expression when survival factors are withdrawn.