We have identified a peptide region on CD18 molecule (the beta subunit of the LFA-1 molecule) involved in syncytia formation of HIV-1-infected lymphocytes. Several phage clones mimicking an epitope of the CD18 cell-surface determinant were isolated from two 9-mer random peptide phage-displayed libraries via their binding to the CD18-specific monoclonal antibody (mAb) MHM23, which in in vitro assay inhibits syncytia formation in HIV-1-infected cells. The peptide sequences displayed on phages that blocked immunolabeling of this mAb on LFA-1-expressing cells were used to identify the epitope recognized by mAb MHM23 by sequence comparison. On the basis of this analysis, two peptides which inhibited syncytia formation in HIV-1-infected cells in vitro were synthesized, thus confirming that they mimic a CD18 domain that is involved in this phenomenon. The results here presented highlight the potential of phage-display technology for the study of biological processes at the basis of virus infection, but also suggest new approaches for the therapy of AIDS.