The functions of JunB during myelopoiesis were studied in vivo. Transgenic mice specifically lacking JunB expression in the myeloid lineage (junB(-/-)Ubi-junB mice) develop a transplantable myeloproliferative disease eventually progressing to blast crisis, which resembles human chronic myeloid leukemia. Similarly, mice reconstituted with ES cell-derived junB-/- fetal liver cells also develop a myeloproliferative disease. In both cases, the absence of JunB expression results in increased numbers of granulocyte progenitors, which display enhanced GM-CSF-mediated proliferation and extended survival, associated with changes in the expression levels of the GM-CSFalpha receptor, the anti-apoptotic proteins Bcl2 and Bclx, and the cell cycle regulators p16(INK4a) and c-Jun. Importantly, ectopic expression of JunB fully reverts the immature and hyperproliferative phenotype of JunB-deficient myeloid cells. These results identify JunB as a key transcriptional regulator of myelopoiesis and a potential tumor suppressor gene.