Background: The Rh blood group system is involved in HDN and transfusion reactions. A retrovirus-expression system was previously used to show that polypeptides carrying the Rh blood group antigens are encoded by the RHD and RHCE genes. This study investigated the structure of the C antigen.
Study design and methods: K562 cells were transduced with full-length cDNA encoding Ce and CE antigens, and the expression of C, e, and E antigens was examined by flow cytometry using MoAbs. The importance of Cys16 in C antigen expression was examined by utilizing site-directed mutagenesis to convert Cys16 to Trp in cDNA encoding Ce and CE before expression in K562 cells.
Results: When K562 cells were transduced with cDNA that was predicted to encode Ce antigens, clear reactivity with anti-e and anti-C was obtained. In contrast, K562 cells transduced with cDNA that was predicted to encode CE antigens gave strong reactivity with anti-E but failed to react with two examples of anti-C. A third example of anti-C gave weak reactivity. When cDNA encoding Ce antigens was mutated to encode Trp16, one example of anti-C had the same reactivity with the mutated polypeptide as with the wild-type molecule, but reactivity with two other anti-C examples was reduced by 50 percent.
Conclusions: The nature of polymorphic residue 226 (proline when E is expressed, alanine when e is expressed) has a marked effect on the epitopes recognized by the three C MoAbs studied. The presence of Cys16 in Ce polypeptides influences the presentation of the C epitope recognized by two of the three MoAbs. These experiments provide the first direct demonstration that C and E/e antigens can be expressed on the same polypeptide.