Recombinant-inbred populations, generated from a cross between Caenorhabditis elegans strains Bergerac-BO and RC301, were used to identify quantitative trait loci (QTL) affecting nematode longevity. Genotypes of young controls and longevity-selected worms (the last-surviving 1% from a synchronously aged population) were assessed at dimorphic transposon-specific markers by multiplex polymerase chain reaction. The power of genetic mapping was enhanced, in a novel experimental design, through map expansion by accrual of recombinations over several generations, internally controlled longevity selection from a genetically heterogeneous, homozygous population, and selective genotyping of extremely long-lived worms. Analysis of individual markers indicated seven life-span QTL, situated near markers on chromosomes I (tcbn2), III (stP127), IV (stP13), V (stP6, stP23, and stP128), and X (stP41). These loci were corroborated, and mapped with increased precision, by nonparametric interval mapping-which supported all loci implicated by single-marker analysis. In addition, a life-span QTL on chromosome II (stP100-stP196), was significant only by interval mapping. Congenic lines were constructed for the longevity QTL on chromosomes III and X, by backcrossing the Bergerac-BO QTL allele into an RC301 background with selection for flanking markers. Survival data for these lines demonstrated consistent and significant effects of each QTL on life span.