Thyroid hormone receptors (TRs) bind as homodimers or heterodimers with retinoid X receptors (RXRs) to DNA elements with diverse orientations of AGGTCA half-sites. We performed a comprehensive x-ray crystal structure-guided mutation analysis of the TR ligand binding domain (TR LBD) surface to map the functional interface for TR homodimers and heterodimers with RXR in the absence and/or in the presence of DNA. We also identified the molecular contacts in TR LBDs crystallized as dimers. The results show that crystal dimer contacts differ from those found in the functional studies. We found that identical TR LBD residues found in helices 10 and 11 are involved in TR homodimerization and heterodimerization with RXR. Moreover, the same TR LBD surface is operative for dimerization with direct repeats spaced by 4 base pairs (DR-4) and with the inverted palindrome spaced by 6 base pairs (F2), but not with TREpal (unspaced palindrome), where homodimers appear to be simply two monomers binding independently to DNA. We also demonstrate that interactions between the TR and RXR DNA binding domains stabilize TR-RXR heterodimers on DR-4. The dimer interface can be functional in the cell, because disruption of key residues impairs transcriptional activity of TRs mediated through association with RXR LBD linked to GAL4 DNA-binding domain.