Oxidation causes melanin fluorescence

Invest Ophthalmol Vis Sci. 2001 Jan;42(1):241-6.

Abstract

Purpose: The goal of this study is the characterization of the strong yellow fluorescence of oxidized melanin in the retinal pigment epithelium (RPE) and the choroid.

Methods: Naturally occurring melanin in the human retina and choroid was oxidized by exposing fixed and plastic-embedded sections of a human eye to light and hydrogen peroxide. Synthetic melanin was also oxidized in vitro by exposure to light and hydrogen peroxide. The fluorescence of oxidized melanin was examined by absorption spectroscopy, fluorescence spectroscopy, and fluorescence microscopy.

Results: Naturally occurring melanin oxidized in situ exhibited a lipofuscin-like yellow fluorescence. Oxidation of melanin in vitro degraded the melanin polymer, resulting in a fluorescent solution. Fluorescence spectroscopy gave an excitation maximum at approximately 470 nm and an emission maximum at approximately 540 nm for both natural and synthetic melanin. Increasing the time of exposure to light or hydrogen peroxide increased melanin fluorescence.

Conclusions: The results indicate that the strong yellow fluorescence of melanin in the RPE and choroid in situ is a property of oxidized melanin and is not due to contamination of the melanin by proteinaceous or lipid materials. The data presented allow a reinterpretation of the results obtained from fluorescence investigations of melanin-containing tissue and suggest a link between melanin degradation and lipofuscin formation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Choroid / drug effects
  • Choroid / metabolism
  • Fluorescence
  • Humans
  • Hydrogen Peroxide / pharmacology
  • Male
  • Melanins / chemistry
  • Melanins / metabolism*
  • Microscopy, Fluorescence
  • Middle Aged
  • Oxidation-Reduction
  • Pigment Epithelium of Eye / drug effects
  • Pigment Epithelium of Eye / metabolism*
  • Spectrometry, Fluorescence
  • Spectrophotometry
  • Time Factors

Substances

  • Melanins
  • Hydrogen Peroxide