Background: Human prostate cancers are initially androgen dependent but ultimately become androgen independent. Overexpression of the Her-2-neu receptor tyrosine kinase has been associated with the progression to androgen independence in prostate cancer cells. We examined the expression of Her-2-neu in normal and cancerous prostate tissues to assess its role in the progression to androgen independence.
Methods: Prostate cancer tissue sections were obtained from 67 patients treated by surgery alone (UNT tumors), 34 patients treated with total androgen ablation therapy before surgery (TAA tumors), and 18 patients in whom total androgen ablation therapy failed and who developed bone metastases (androgen-independent [AI] disease). The sections were immunostained for Her-2-neu, androgen receptor (AR), prostate-specific antigen (PSA), and Ki-67 (a marker of cell proliferation) protein expression. Messenger RNA (mRNA) levels and gene amplification of Her-2-neu were examined by RNA in situ hybridization and fluorescent in situ hybridization(FISH), respectively, in a subset of 27 tumors (nine UNT, 11 TAA, and seven AI). All statistical tests were two-sided.
Results: Her-2-neu protein expression was statistically significantly higher in TAA tumors than in UNT tumors with the use of two different scoring methods (P =.008 and P =.002). The proportion of Her-2-neu-positive tumors increased from the UNT group (17 of 67) to the TAA group (20 of 34) to the AI group (14 of 18) (P<.001). When compared with UNT tumors, tumor cell proliferation was higher in AI tumors (P =.014) and lower in TAA tumors (P<.001). All tumors expressed AR and PSA proteins. Although Her-2-neu mRNA expression was high in TAA and AI tumors, no Her-2-neu gene amplification was detected by FISH in any of the tumor types.
Conclusions: Her-2-neu expression appears to increase with progression to androgen independence. Thus, therapeutic targeting of this tyrosine kinase in prostate cancer may be warranted.