X-ray crystal structure and catalytic properties of Thr252Ile mutant of cytochrome P450cam: roles of Thr252 and water in the active center

J Biochem. 2000 Dec;128(6):965-74. doi: 10.1093/oxfordjournals.jbchem.a022848.

Abstract

The structure-function relationship in cytochrome P450cam monooxygenase was studied by employing its active site mutant Thr252Ile. X-ray crystallographic analyses of the ferric d-camphor-bound form of the mutant revealed that the mutation caused a structural change in the active site giving an enlarged oxygen-binding pocket that did not contain any hydrophilic group such as the OH group of Thr and H(2)O. The enzyme showed a low monooxygenase activity of ca. 1/10 of the activity of the wild-type enzyme. Kinetic analyses of each catalytic step revealed that the rate of proton-coupled reduction of the oxygenated intermediate of the enzyme, a ternary complex of dioxygen and d-camphor with the ferrous enzyme, decreased to about 1/30 of that of the wild-type enzyme, while the rates of other catalytic steps including the reduction of the ferric d-camphor-bound form by reduced putidaredoxin did not change significantly. These results indicated that a hydrophilic group(s) such as water and/or hydroxyl group in the active site is prerequisite to a proton supply for the reduction of the oxygenated intermediate, thereby giving support for the operation of a proton transfer network composed of Thr252, Asp251, and two other amino acids and water proposed by previous investigators.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Binding Sites
  • Camphor / metabolism
  • Camphor 5-Monooxygenase / chemistry
  • Camphor 5-Monooxygenase / genetics
  • Camphor 5-Monooxygenase / metabolism*
  • Catalysis
  • Crystallography, X-Ray
  • Electron Transport
  • Isoleucine / metabolism*
  • Models, Molecular
  • Mutagenesis, Site-Directed
  • Oxygen / metabolism
  • Protein Conformation
  • Spectrophotometry, Ultraviolet
  • Threonine / metabolism*
  • Water / metabolism*

Substances

  • Isoleucine
  • Water
  • Threonine
  • Camphor
  • Camphor 5-Monooxygenase
  • Oxygen