Mammalian lipoxygenases constitute a heterogeneous family of lipid-peroxidizing enzymes, and the various isoforms are categorized with respect to their positional specificity of arachidonic acid oxygenation into 5-, 8-, 12-, and 15-lipoxygenases. Structural modeling suggested that the substrate binding pocket of the human 5-lipoxygenase is 20% bigger than that of the reticulocyte-type 15-lipoxygenase; thus, reduction of the active-site volume was suggested to convert a 5-lipoxygenase to a 15-lipoxygenating enzyme species. To test this "space-based" hypothesis of the positional specificity, the volume of the 5-lipoxygenase substrate binding pocket was reduced by introducing space-filling amino acids at critical positions, which have previously been identified as sequence determinants for the positional specificity of other lipoxygenase isoforms. We found that single point mutants of the recombinant human 5-lipoxygenase exhibited a similar specificity as the wild-type enzyme but double, triple, and quadruple mutations led to a gradual alteration of the positional specificity from 5S- via 8S- toward 15S-lipoxygenation. The quadruple mutant F359W/A424I/N425M/A603I exhibited a major 15S-lipoxygenase activity (85-95%), with (8S,5Z,9E,11Z,14Z)-8-hydroperoxyeicosa-5,9 ,11, 14-tetraenoic acid being a minor side product. These data indicate the principle possibility of interconverting 5- and 15-lipoxygenases by site-directed mutagenesis and appear to support the space-based hypothesis of positional specificity.