Oxidized phosphatidylcholine (OxPC) formed in oxidized low density lipoprotein (OxLDL) is thought to be involved in the development of atherosclerosis. OxPC has been found in foam cells in atherosclerotic lesions and suggested to be the epitope for OxLDL recognition by macrophages. OxPC is present as a complex with apolipoprotein B (apoB) in OxLDL, since some OxPC can bind with proteins. In the current study, the intracellular fate of OxPC-apoB complexes after internalization of OxLDL by macrophages was investigated. Murine macrophage cell line J774.1 was incubated with either OxLDL or acetylated LDL for 24 h, then the cells were further incubated for up to 24 h in new medium without lipoprotein. Modified apoB in the cells was quantitated by sandwich ELISA using monoclonal antibodies against OxPC and apoB. Intracellular OxLDL decreased rapidly for the first 4 h to approx. 20% of that before medium change, with the apparent metabolism of OxPC-apoB complex ceasing. OxPC-apoB complexes that remained in the cells after 24 h chasing increased as the period of OxLDL loading in macrophages prolongs. Acetylated LDL in the cells decreased quickly and disappeared after 4 h of chasing. Subcellular fractionation using sucrose density gradient ultracentrifugation of macrophages, which had already accumulated OxPC-apoB complexes by 24 h of incubation with OxLDL and further 24 h chasing, showed that the complex was co-localized with endosomal and lysosomal markers. Immunohistochemical double staining studies demonstrated that OxPC and apoB co-localize in foam cells in early atherosclerotic lesions obtained from human coronary artery. These results suggest that OxPC-apoB complexes originating from OxLDL accumulate in foam cells in human atherosclerotic lesions as well as in macrophages in vitro.