The human hematopoietic prostaglandin D synthase (H-PGDS) gene is highly expressed in human megakaryoblastic cells, in which phorbol ester induces its expression. We characterized the promoter activity of the 5'-flanking region and the untranslated exon 1 (-1044 to +290) of the human H-PGDS gene in human megakaryoblastic Dami cells. Transient expression analysis using the luciferase reporter gene revealed that the 5'-flanking region and the untranslated exon 1 were sufficient for efficient expression of the H-PGDS gene in Dami cells, but not in monocytic U937 cells. Deletion and site-directed mutagenesis of the Oct-1 element in the 5'-flanking region decreased the promoter activity by approximately 30% compared with that of the entire region from -1044 to +290. An electrophoretic mobility shift assay demonstrated that Oct-1 specifically bound to the promoter region. Interestingly, even only untranslated exon 1 (+1 to +290) showed approximately 60% of the promoter activity of the entire region from -1044 to +290. Site-directed mutagenesis of the AP-2 element within the untranslated exon 1 abolished the basal promoter activity as well as its phorbol ester-mediated up-regulation. In AP-2-deficient HepG2 cells, the H-PGDS promoter activity was enhanced by coexpression with AP-2alpha. These findings indicate that the Oct-1 element in the 5'-flanking region acts as a positive cis-acting element and that the AP-2 element in the untranslated exon 1 is crucial for both basal and phorbol ester-mediated up-regulation of human H-PGDS gene expression in megakaryoblastic Dami cells.