We have previously described the isolation of primitive, slow-proliferating progenitors from normal, circulating CD34+ cells by using the fluorescent dye 5-6-carboxyfluorescein diacetate succinimidyl ester (CFDA-SE). CFDA-SE(bright) (primitive) and CFDA-SE(dim) (differentiating) cells were isolated following cytokine stimulation on the basis of their different proliferation rates. In the present work we analysed the expression levels of a number of proteins involved with differentiation, proliferation and survival/apoptosis in CFDA-SE(bright)/CD34+/slow-proliferating cells that were previously defined as progenitors capable of differentiating into different lineages. The aim of this work was to gain a better understanding of our model system in order to define some of the important parameters that regulate differentiation in haematopoietic progenitors. GATA-1 and PU.1 RNA levels were similar in freshly isolated (d 0) CD34+ and in CFDA-SE(bright) (bright) cells, whereas they increased in CFDA-SE(dim) (dim) cells. Accordingly, Nm23 was expressed at higher levels in bright cells. Moreover, bright cells had higher p21WAF1/CIP1, p27KIP1 and p16Ink4 protein levels than dim cells. Consistently, Cdc2 and Cdk2 kinase activity was much higher in the dim than in the slower proliferating bright cells. C-myc and p53 levels were higher in bright cells than in d 0 CD34+ and dim cells, and so was Bcl-xL, which followed the trend we have previously described for Bcl-2. Thus, bright cells, despite having a higher proliferation rate than the starting d 0 CD34+ population, have strikingly elevated levels of cyclin-dependent kinase inhibitors, which are likely to also act as inhibitors of differentiation.