Background: Among the many adipocyte-derived endocrine factors, we found an adipocyte-derived plasma protein, adiponectin, that was decreased in obesity. We recently demonstrated that adiponectin inhibited tumor necrosis factor-alpha (TNF-alpha)-induced expression of endothelial adhesion molecules and that plasma adiponectin level was reduced in patients with coronary artery disease (CIRCULATION: 1999;100:2473-2476). However, the intracellular signal by which adiponectin suppressed adhesion molecule expression was not elucidated. The present study investigated the mechanism of modulation for endothelial function by adiponectin.
Methods and results: The interaction between adiponectin and human aortic endothelial cells (HAECs) was estimated by cell ELISA using biotinylated adiponectin. HAECs were preincubated for 18 hours with 50 microg/mL of adiponectin, then exposed to TNF-alpha (10 U/mL) or vehicle for the times indicated. NF-kappaB-DNA binding activity was determined by electrophoretic mobility shift assays. TNF-alpha-inducible phosphorylation signals were detected by immunoblotting. Adiponectin specifically bound to HAECs in a saturable manner and inhibited TNF-alpha-induced mRNA expression of monocyte adhesion molecules without affecting the interaction between TNF-alpha and its receptors. Adiponectin suppressed TNF-alpha-induced IkappaB-alpha phosphorylation and subsequent NF-kappaB activation without affecting other TNF-alpha-mediated phosphorylation signals, including Jun N-terminal kinase, p38 kinase, and Akt kinase. This inhibitory effect of adiponectin is accompanied by cAMP accumulation and is blocked by either adenylate cyclase inhibitor or protein kinase A (PKA) inhibitor.
Conclusions: These observations raise the possibility that adiponectin, which is naturally present in the blood stream, modulates the inflammatory response of endothelial cells through cross talk between cAMP-PKA and NF-kappaB signaling pathways.