Herpes simplex virus types 1 and 2 differ in their interaction with heparan sulfate

J Virol. 2000 Oct;74(19):9106-14. doi: 10.1128/jvi.74.19.9106-9114.2000.

Abstract

Cell surface heparan sulfate (HS) serves as an initial receptor for many different viruses, including herpes simplex virus types 1 and 2 (HSV-1 and 2, respectively). Glycoproteins C and B (gC and gB) are the major components of the viral envelope that mediate binding to HS. In this study, purified gB and gC homologous proteins as well as purified HSV-1 and HSV-2 virions were compared for the ability to bind isolated HS receptor molecules. HSV-1 gC and HSV-2 gC bound comparable amounts of HS. Similarly, HSV-1 gB and its HSV-2 counterpart showed no difference in the HS-binding capabilities. Despite the similar HS-binding potentials of gB and gC homologs, HSV-1 virions bound more HS than HSV-2 particles. Purified gC and gB proteins differed with respect to sensitivity of their interaction with HS to increased concentrations of sodium chloride in the order gB-2 > gB-1 > gC-1 > gC-2. The corresponding pattern for binding of whole HSV virions to cells in the presence of increased ionic strength of the medium was HSV-2 gC-neg1 > HSV-1 gC(-)39 > HSV-1 KOS 321 > HSV-2 333. These results relate the HS-binding activities of individual glycoproteins with the cell-binding abilities of whole virus particles. In addition, these data suggest a greater contribution of electrostatic forces for binding of gB proteins and gC-negative mutants compared with binding of gC homologs and wild-type HSV strains. Binding of wild-type HSV-2 virions was the least sensitive to increased ionic strength of the medium, suggesting that the less extensive binding of HS molecules by HSV-2 than by HSV-1 can be compensated for by a relatively weak contribution of electrostatic forces to the binding. Furthermore, gB and gC homologs exhibited different patterns of sensitivity of binding to cells to inhibition with selectively N-, 2-O-, and 6-O-desulfated heparin compounds. The O-sulfate groups of heparin were found to be more important for interaction with gB-1 than gB-2. These results indicate that HSV-1 and HSV-2 differ in their interaction with HS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Genetic Variation
  • Glycoproteins / chemistry
  • Heparitin Sulfate*
  • Herpesvirus 1, Human / chemistry*
  • Herpesvirus 1, Human / genetics
  • Herpesvirus 2, Human / chemistry*
  • Herpesvirus 2, Human / genetics
  • Humans
  • Viral Envelope Proteins / chemistry*

Substances

  • Glycoproteins
  • Viral Envelope Proteins
  • Heparitin Sulfate