Somatostatin analogs labeled with radionuclides are of considerable interest in nuclear oncology as diagnostic or therapeutic tools for somatostatin receptor (SSTR)-expressing tumors. We investigated the suitability of DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) as a replacement for the widely used diethylenetriaminepentaacetic acid, to enable stable labeling of somatostatin analogs with both therapeutic (90Y) and diagnostic (111In) radionuclides. The three clinically relevant somatostatin agonists, octreotide, vapreotide, and lanreotide, together with the newly designed Tyr3-octreotide (TyrOc), were conjugated to DOTA and labeled with 90Y or 111In. For all DOTA-somatostatin analogs tested, irrespective of the incorporated radionuclide, we observed favorable biodistribution profiles in AR4-2J tumor-bearing mice: 1) a rapid clearance from all SSTR-negative tissues except kidney; 2) a specific uptake in SSTR-positive tissues, including tumor; and 3) an excellent tumor penetration. The main route of excretion was via the kidneys. Nevertheless, DOTATOC was clearly superior to the other DOTA-somatostatin analogs tested, as well as OctreoScan, as indicated by the highest tumor-to-nontarget-tissue ratio, including the tumor-to-SSTR-positive-tissue ratios. The presence of different SSTR subtypes in the SSTR-positive tissues possibly contributes to these differential uptakes. We assume that the very favorable behavior of DOTATOC in our mouse model makes this radioligand very promising for future applications in nuclear oncology.