To test the effects of prostaglandin E1 on 2.5 h of ischemia followed by 2 h of reperfusion, continuous nitric oxide measurements (electrochemical) were correlated with intermittent assays of superoxide and peroxynitrite levels (chemiluminescence) and ischemia/reperfusion injury in rabbit adductor magnus muscle. Administering prostaglandin E1 (1 microg/kg) before or during ischemia/reperfusion caused normalization of the release of nitric oxide, superoxide, and peroxynitrite to slightly above preischemic levels. This pattern was dramatically different from that observed during ischemia/reperfusion alone, where nitric oxide concentration increased three times above its basal level. Normalization of constitutive nitric oxide synthase activity in the presence of prostaglandin E1 was associated with a significant reduction of superoxide and peroxynitrite production and subsequent reduction of ischemia/reperfusion injury. At 2 h of reperfusion, vasoconstriction associated with ischemia/reperfusion injury was eliminated, and edema was significantly mollified but still apparent. Prostaglandin E1 treatment does not directly inhibit constitutive nitric oxide synthase, like the inhibitor N(omega)-monomethyl-L-arginine. Some phenomenon associated with ischemia turns on endothelial constitutive nitric oxide synthase to start transforming L-arginine and oxygen into nitric oxide, but prostaglandin E1 seems to inhibit this phenomenon. Thus, essential local L-arginine pools are not depleted, and normal basal levels of essential nitric oxide are maintained, whereas cytotoxic superoxide and peroxynitrite production by L-arginine-deficient constitutive nitric oxide synthase is prevented.