TIF1beta, a member of the transcriptional intermediary factor 1 family, has been reported to function as a corepressor for the large class of KRAB domain-containing zinc finger proteins of the Krüppel type. In this study, we report the genomic organization and nucleotide sequence of the mouse TIF1beta gene. This gene comprises 17 coding exons located within 7 kb of genomic DNA. Exon sizes vary from 37 bp (exon 10) to 901 bp (exon 1), and intron sizes range from 71 bp to 1843 bp. All introns have the conserved GT and AG dinucleotides present at the donor and acceptor sites, respectively. The functional/homology regions of the TIF1beta protein are encoded by distinct exons. The amino-terminal RING finger is encoded by two exons interrupted by a small intron. The B boxes lie within individual exons. Similarly to the RING finger, the PHD finger is encoded by two exons. Three exons constitute the carboxy-terminal bromodomain, and their position correlates well with the secondary structure elements of the domain as predicted by computer modeling. Taken together, these results will facilitate the genetic manipulation of TIF1beta for future in vivo structure-function studies.