The cellular entry of HIV is mediated by the specific interaction of viral envelope glycoproteins with the cell-surface marker CD4 and a chemokine receptor (CCR5 or CXCR4). Individuals with a 32-base-pair (bp) deletion in the CCR5 coding region, which results in a truncated peptide, show resistance to HIV-1 infection. This suggests that the downregulation of CCR5 expression on target cells may prevent HIV infection. Therefore, ribozymes that inhibit the CCR5 expression offer a novel approach for anti-HIV gene therapy. To assess the effect of an anti-CCR5 ribozyme (R5Rbz) on macrophage differentiation, CD34+ hematopoietic progenitor cells were transduced with a retroviral vector carrying RSRbz and allowed to differentiate in the presence of appropriate cytokines. R5Rbz-transduced CD34+ cells differentiated normally into mature macrophages that carried CD14 and CD4 surface markers, expressed the anti-CCR5 ribozyme, and showed significant resistance to viral infection upon challenge with the HIV-1 BaL strain. Using an in vivo thymopoiesis model, the effect of RSRbz on stem cell differentiation into thymocytes was evaluated by reconstituting SCID-hu mice thymic grafts with ribozyme-transduced CD34+ cells. FACS analysis of cell biopsies at 4 and 6 weeks postengraftment for HLA, CD4, and CD8 markers showed comparable levels of reconstitution and similar percentages of subpopulations of thymocytes between grafts receiving R5Rbz-transduced and control CD34+ cells. RT-PCR assays demonstrated the expression of the anti-CCR5 ribozyme in CD4+, CD8+, and CD4+/CD8+ thymocyte subsets derived from RSRbz-transduced CD34+ cells. These results indicate that anti-CCR5 ribozyme can be introduced into hematopoietic stem cells without adverse effects on their subsequent lineage-specific differentiation and maturation. The expression of anti-CCR5 ribozymes in HIV-1 target cells offers a novel gene therapy strategy to control HIV infection.