Forskolin-induced apical membrane insertion of virally expressed, epitope-tagged CFTR in polarized MDCK cells

Am J Physiol Cell Physiol. 2000 Aug;279(2):C375-82. doi: 10.1152/ajpcell.2000.279.2.C375.

Abstract

Channel gating of the cystic fibrosis transmembrane conductance regulator (CFTR) is activated in response to cAMP stimulation. In addition, CFTR activation may also involve rapid insertion of a subapical pool of CFTR into the plasma membrane (PM). However, this issue has been controversial, in part because of the difficulty in distinguishing cell surface vs. intracellular CFTR. Recently, a fully functional, epitope-tagged form of CFTR (M2-901/CFTR) that can be detected immunologically in nonpermeabilized cells was characterized (Howard M, Duvall MD, Devor DC, Dong J-Y, Henze K, and Frizzell RA. Am J Physiol Cell Physiol 269: C1565-C1576, 1995; and Schultz BD, Takahashi A, Liu C, Frizzell RA, and Howard M. Am J Physiol Cell Physiol 273: C2080-C2089, 1997). We have developed replication-defective recombinant adenoviruses that express M2-901/CFTR and used them to probe cell surface CFTR in forskolin (FSK)-stimulated polarized Madin-Darby canine kidney (MDCK) cells. Virally expressed M2-901/CFTR was functional and was readily detected on the apical surface of FSK-stimulated polarized MDCK cells. Interestingly, at low multiplicity of infection, we observed FSK-stimulated insertion of M2901/CFTR into the apical PM, whereas at higher M2-901/CFTR expression levels, no increase in surface expression was detected using indirect immunofluorescence. Immunoelectron microscopy of unstimulated and FSK-stimulated cells confirmed the M2-901/CFTR redistribution to the PM upon FSK stimulation and demonstrates that the apically inserted M2-901/CFTR originates from a population of subapical vesicles. Our observations may reconcile previous conflicting reports regarding the effect of cAMP stimulation on CFTR trafficking.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenoviridae / metabolism
  • Animals
  • Cells, Cultured / virology
  • Chloride Channels / drug effects
  • Chloride Channels / metabolism
  • Colforsin / pharmacology
  • Cystic Fibrosis Transmembrane Conductance Regulator / drug effects
  • Cystic Fibrosis Transmembrane Conductance Regulator / metabolism*
  • Dogs
  • Epitopes
  • Kidney / cytology
  • Kidney / drug effects
  • Kidney / metabolism*

Substances

  • Chloride Channels
  • Epitopes
  • Cystic Fibrosis Transmembrane Conductance Regulator
  • Colforsin