In the scanning transmission electron microscope (STEM) an electron beam of a few angstroms diameter is raster scanned over a thin sample and the scattered electrons are sequentially measured for each sample element irradiated. The mass, the elemental composition and the structure of a protein can be simultaneously assessed if all detector systems of the STEM are used. Aspects affecting the accuracy of the mass measurement technique and the demands placed on the instrument's dark-field detector system are outlined. In addition, the influences of some sample preparation techniques are noted and the mass-loss induced at ambient temperatures by the incidence of 80kV electrons on various biological samples is reported. Finally, the importance of the STEM for the structural analysis of proteins is documented by examples.