Cleaved high molecular weight kininogen binds directly to the integrin CD11b/CD18 (Mac-1) and blocks adhesion to fibrinogen and ICAM-1

Blood. 2000 Jun 15;95(12):3788-95.

Abstract

High molecular weight kininogen (HK) and its cleaved form (HKa) have been shown to bind to neutrophils. Based on studies using monoclonal antibodies (mAbs), we postulated that CD11b/CD18 (Mac-1) might be the receptor on the neutrophils for binding to HK/HKa. However, the direct interaction of HK/HKa and Mac-1 had not been demonstrated. We therefore transfected HEK 293 cells with human Mac-1. Cell binding assays using fluorescein isothiocyanate-labeled HKa showed increased binding to the Mac-1 transfected cells compared with the control transfected cells. The binding was specific because unlabeled HKa, Mac-1-specific antibody, and fibrinogen can inhibit the binding of biotin-HKa to Mac-1 transfected cells. HKa bound to Mac-1 transfected cells (20 000 molecules/cell) with a K(d) = 62 nmol/L. To demonstrate directly the formation of a complex between HKa and Mac-1, we examined the interaction of HKa and purified Mac-1 in a cell-free system using an IAsys resonant mirror optical biosensor. The association and dissociation rate constants (k(on) and k(off), respectively) were determined, and they yielded a dissociation constant (K(d)) of 3.2x10(-9) mol/L. The functional significance of direct interaction of HKa to Mac-1 was investigated by examining the effect of HKa on cellular adhesion to fibrinogen and intercellular adhesion molecule-1 (ICAM-1), molecules abundant in the injured vessel wall. HKa blocked the adhesion of Mac-1 transfected cells to fibrinogen and ICAM-1 in a dose-dependent manner. Thus, HKa may interrupt Mac-1-mediated cell-extracellular matrix and cell-cell adhesive interactions and may therefore influence the recruitment of circulating neutrophils/monocytes to sites of vessel injury. (Blood. 2000;95:3788-3795)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Adhesion / drug effects
  • Cell Adhesion / physiology*
  • Cell Line
  • Fibrinogen / physiology*
  • Fluorescein-5-isothiocyanate
  • Humans
  • Intercellular Adhesion Molecule-1 / physiology*
  • Kidney
  • Kinetics
  • Kininogens / chemistry
  • Kininogens / pharmacology*
  • Macrophage-1 Antigen / drug effects
  • Macrophage-1 Antigen / genetics
  • Macrophage-1 Antigen / physiology*
  • Recombinant Proteins / drug effects
  • Recombinant Proteins / metabolism
  • Transfection

Substances

  • Kininogens
  • Macrophage-1 Antigen
  • Recombinant Proteins
  • Intercellular Adhesion Molecule-1
  • Fibrinogen
  • Fluorescein-5-isothiocyanate